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Microarray technology is now widely available and is being applied to address increasingly complex scientific

questions. Consequently, there is a greater demand for statistical assessment of the conclusions drawn from

microarray experiments. This review discusses fundamental issues of how to design an experiment to ensure 

that the resulting data are amenable to statistical analysis. The discussion focuses on two-color spotted cDNA

microarrays, but many of the same issues apply to single-color gene-expression assays as well.

The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA (e-mail: garyc@jax.org).

Sources of variation in microarray experiments
The design of a two-color microarray experiment can be consid-
ered as having three layers. Figure 1 shows an example of an
experiment that compares the effects of two treatments—A and
B—on gene-expression profiles in a mouse tissue. At the top
layer of the experiment are the experimental units, the two mice
to whom each treatment is applied. The term ‘treatment’ per-
tains to any attribute, such as the sex or strain of the organism, of
primary interest in the experiment. The mice were selected to be
representative of a population of mice and, if possible, the treat-
ment should be assigned using a randomizing device such as a
coin toss. Assigning at least two mice to each treatment group
ensures that there is biological replication in the experiment. In
the middle layer, two RNA samples are obtained from each
mouse. These technical replicates may be two independent RNA
extractions or two aliquots of the same extraction. The RNA
samples are assigned to two different dye labels, indicated by the
red and green test tubes. They are then paired (one red and one
green) and mixed for co-hybridization on microarray slides. The
bottom layer of the experiment involves the arrangement of array
elements on the slides. In this example, duplicate spots of each
cDNA clone have been printed side by side.

The many sources of variation in a microarray experiment
can be partitioned along these three layers. Biological variation
(top layer) is intrinsic to all organisms; it may be influenced by
genetic or environmental factors, as well as by whether the sam-
ples are pooled or individual. Technical variation (middle layer)
is introduced during the extraction, labeling and hybridization
of samples. Measurement error (bottom layer) is associated
with reading the fluorescent signals, which may be affected by
factors such as dust on the array. Valid statistical tests for differ-
ential expression of a gene across the samples can be con-
structed on the basis of any of these variance components, but
there are important distinctions in how the different types of
tests should be interpreted. If we are interested in determining
how the treatments affect different biological populations rep-
resented in our samples, statistical tests should be based on the
biological variance. If our interest is to detect variations within
treatment groups, the tests should be based on technical varia-
tion. For example, Olesiak et al.1 employed both types of tests to
look at variation between and within natural populations. Tests

based on measurement error variance can also be constructed
but are of limited utility2. For most questions of interest, the
higher two levels of variation are appropriate for constructing
tests, and hence good designs should incorporate replication at
the higher layers.

Experimental units and treatments
The correlation observed between ratios of fluorescent intensity
from duplicate spots on a single microarray slide will typically
exceed 95%. This is often interpreted as a demonstration that
microarray assays are reproducible. However, if the same target
sample is divided and hybridized to two different microarray
slides, the correlation across hybridizations is likely to fall to the
60 to 80% range, somewhat lower if the dye labeling is reversed.
Correlations between samples obtained from individual inbred
mice may be as low as 30%. If the experiments are carried out in
different laboratories, the correlations may be lower still.

These decreasing correlations reflect the cumulative contribu-
tions of multiple sources of variation. It is tempting to avoid bio-
logical replication in an experiment because results will appear to
be more reproducible. The apparent increase in statistical power
is illusory, however, and significant findings may simply reflect
chance fluctuations in the particular animals chosen for the
experiment. In general, it is appropriate to take steps to vary the
conditions of the experiment—for example, by assaying multiple
animals—to ensure that the effects that do achieve statistical sig-
nificance are real and will be reproducible in different settings3.

Identifying the independent units in an experiment is a pre-
requisite for a proper statistical analysis, as any hidden correla-
tions in the data can lead to bias and inflated levels of statistical
significance. Statistical independence is a relative concept. For
example, hybridizations of the same target sample to multiple
slides may be viewed as independent replicates if the intent is to
characterize that sample accurately. However, in an experiment
where the question of interest concerns a biological comparison
at the whole-organism level (for example, a comparison of gene-
expression profiles between genetically altered and control ani-
mals), the technical replicates from any one sample may no
longer be regarded as independent.

Details of how individual animals and samples were handled
throughout the course of an experiment can be important to
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identify which biological samples and technical replicates are
independent. In general, two measurements may be regarded as
independent only if the experimental materials on which the
measurements were obtained could have received different treat-
ments, and if the materials were handled separately at all stages of
the experiment where variation might have been introduced4.

As an example, consider a cell line that is divided into eight
equal samples. Four are assigned to one treatment, and the
remaining four receive a second treatment. The eight aliquots
are handled separately throughout the entire experimental pro-
cedure, and each is measured in triplicate. This results in 24
total observations, but there are eight experimental units. Now
consider a cell line that is divided into two aliquots, each one
receiving a different treatment. The material is further subdi-
vided into four aliquots per treatment group, each of which is
processed and then measured in triplicate. Again we have 24
observations, but now there are only two independent experi-
mental units.

A simple way to assess the adequacy of a design is to determine
the degrees of freedom (df). This is done by counting the num-
ber of independent units and subtracting from it the number of
distinct treatments (count all combinations that occur if there

are multiple treatment factors). If there are no degrees of free-
dom left, there may be no information available to estimate the
biological variance, the statistical tests will rely on technical vari-
ance alone, and the scope of the conclusions will be limited to the
samples in hand. If there are 5 df or more, you are in good shape
(see Box).

In some circumstances, a large number of experimental units
may be available, perhaps more than can be measured individu-
ally, in which case we have the option to form pools of individual
samples. In other cases, pooling may be a necessity owing to the
limited availability of RNA. Pooling the original experimental
units creates new units, the pools. Pooling can reduce the biolog-
ical component of variation, but it cannot reduce the variability
due to sample handling or measurement error.

In a two-sample comparison, we could consider making two
large pools of all available units and measuring each pool multi-
ple times. This is a poor design, as it does not allow estimation of
the between-pool variance. By pooling all the available samples
together we have minimized the biological variance, but we have
also eliminated all independent replication. It is better to use sev-
eral pools and fewer technical replicates.

Pairing samples for hybridizations
The ability to make direct comparisons between two samples on
the same microarray slide is a unique and powerful feature of
the two-color microarray system. By pairing samples, we can
account for variation in spot size that would otherwise con-
tribute to the error. However, it is often impractical to make all
possible pairwise comparisons among the samples, because of
cost or limitations in the amount of sample. Thus, an important

Allocating resources in a microarray experiment
The precision of estimated quantities depends on the variability
of the experimental material, the number of experimental units,
the number of repeated observations per unit and the accuracy of
the primary measurements4. The basis for drawing inferential
conclusion is the residual error (or mean squared error, MSE),
which quantifies the precision of estimates and thus allows one to
determine whether estimated quantities are significantly differ-
ent in the statistical sense. In a microarray experiment, the resid-
ual error can be decomposed into three components of variance
corresponding to the three layers of the design (Fig. 1). The first
component is the intrinsic variation of the biological units
within a treatment group, which we will denote by

The second component, denoted by

represents the variation between technical replicates and
includes effects due to the extraction and labeling of RNA as well
as array to array variation. The third component, denoted by

represents the measurement error within a single array. We note
that the last two components of variance could be combined or
decomposed in different ways, but this particular breakdown will
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serve our immediate purpose of deciding how to allocate replica-
tion and repeated measurements in a microarray experiment. In
general, the MSE is the square root of the sum of these compo-
nents. In multifactor experiments, however, the MSE may
depend on which factor or combination of factors is being tested.

The magnitude of the residual error is an unknown quantity.
The most straightforward and reliable method of estimating it is
through the observed variation between independent experi-
mental units. An important quantity for establishing the preci-
sion of the estimated MSE is the residual degrees of freedom (df).
For a single-factor experiment with N animals divided into p
treatment groups, the residual df are N – p. The effect of having
to estimate the residual error, and hence of being uncertain of the
true variation, is to multiply the true variation by

(This is effectively the difference between a z-test and a t-test.)
Although it is generally recommended to have no fewer than 5

residual df, it is quite common to see fewer in microarray experi-
ments, even to the extreme of having no residual df at all. In the
latter case, some strong (that is, questionable) assumptions
about the variability in the experiment must be made in order to
draw conclusions that can be generalized.

Replication and/or repetition of measurements at various lev-
els in the experiment can increase precision. The most direct

1 + 
1
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.

Fig. 1 A schematic representation of the three layers of design in a simple
microarray experiment. In the top layer, biological units (mice) are assigned to
treatment groups (A and B). In the middle layer, two RNA samples are obtained
from each mouse. These technical replicates are differentially labeled and
hybridized in pairs to microarrays. Each pairing involves a direct comparison of
an A mouse to a B mouse, and the dye labels are reversed in two of the four
comparisons. The bottom layer of the experiment design is represented by the
array images, in which the duplicate spotting of clones is apparent.
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step in designing an experiment is to decide how many technical
replicates will be measured and how these will be paired
together on arrays.

Although the problem of arranging the direct comparisons
may seem bewildering, following a few simple guidelines will
ensure that a design is effective5. The efficiency of comparisons
between two samples is determined by the length and the num-
ber of paths connecting them5,6. It is most efficient to make the
comparisons of greatest interest directly on the same array. Con-
trasts between samples that are never directly compared in an
experiment are possible, provided that there is a path of compar-
isons linking them. Potential biases can be minimized by balanc-
ing dyes and samples7. To achieve balance, create an even
number of technical replicates from each biological sample and
assign equal numbers of these to each dye label.
Dye swaps. A simple and effective design for the direct compari-
son of two samples is the dye-swap experiment7 (Fig. 2a). This
design uses two arrays to compare two samples. On array 1, the
control sample is assigned to the red dye, and the treatment sam-
ple is assigned to the green dye. On array 2, the dye assignments
are reversed. This arrangement can be repeated by using four (or
six or more) arrays to compare the same two biological samples
(Fig. 2b). This repeated dye-swap experiment is useful for reduc-
ing technical variation but should not be confused with the repli-

cated dye-swap experiment in which independent biological
samples are compared (Fig. 2c). The latter experiment accounts
for both technical and biological variation in the assay. It may be
more difficult to achieve statistical significance using the repli-
cated dye-swap experiment, especially if the biological variation
is substantial. But the advantage is that while conclusions from
the repeated dye-swap experiment are limited to the samples that
were assayed, those from the replicated experiment apply to the
biological population from which the samples were obtained.
Reference sample designs. In the most widely used experimental
design for microarrays, all the direct comparisons are made to a
reference sample using the same orientation of dye labeling 
(Fig. 3a). In this design, dye effects are confounded with treat-
ment effects5,6. Using two arrays in a dye-swap configuration to
compare each sample (Fig. 3b) provides technical replication and
avoids confounding of effects. Brem et al.8 used this design in a
study of genetic effects on transcription levels in yeast.

We and others5,7,9,10 have argued that the reference samples are
not necessary and that the practice of making all comparisons to
a reference sample can lead to inefficient experiments. Fully half
of the measurements in a reference experiment are made on the
reference sample, which is presumably of little or no interest. As a
consequence, technical variation is inflated four times relative to
the level that can be achieved with direct comparisons. Despite
this inefficiency, reference designs have a number of advantages.
The path connecting any two samples is never longer (or shorter)
than two steps; thus all comparisons are made with equal effi-
ciency. Reference designs can be extended (as long as the refer-

method is to increase the number of experimental units. The
MSE decreases in proportion to the square root of the sample size
(if experimental units are costly, this can be a problem). It is also
possible to increase precision by taking measurements on multi-
ple technical replicates obtained from the experimental units.
However, this approach cannot reduce the biological variance
component, and the gain achieved by taking repeated measure-
ments of single RNA samples will be limited.

Lastly, the precision of measurements obtained on a single array
may be improved by printing multiple spots of the same clone.
This will not impact on the other variance components. Pooling of
samples is another strategy that increases precision by reducing
the variability of the experimental material itself. In the absence of
empirical data on the effects of pooling, we can only speculate, but
it seems reasonable to suppose that the between-pool variance for
a pool size of k experimental units will be approximately

for some constant 0 < a < 1. In the case a = 0 pooling will have no
effect, and in the case a = 1 the variance is reduced in direct pro-
portion to the pool size.

To determine the optimum arrangement of an experiment, we
may wish to consider the costs of various components. Let CI rep-
resent the cost of an experimental unit and CM be the cost of mea-
surement for a single technical replicate. Now suppose that we
have created n pools of k individuals each, and each pool will be

σ2     = 
pool

σ21

ka B

measured using m technical replicates on microarray slides with r
repetitions of each clone. The MSE of this experiment will be

and the cost of the experiment is cost = n • kC1 + n • mCM.
These formulae may be useful for planning experiments, but

they depend on detailed knowledge of the variance components.
Nonetheless, this exercise suggests some general guidelines for
allocating the resources in a microarray experiment.

• When measurement is expensive and/or the individual mea-
surements are very precise, it is preferable to add experimen-
tal units rather than technical replicates.

• When the variablity of measurements is greater than the vari-
ability between experimental units, technical replication and
repeated measurements will effectively increase precision.

• When variability between individual samples is large and the
units are not too costly, it may be worthwhile to pool samples.
The effectiveness of pooling is offset if precious degrees of free-
dom are lost from the experiment. Pooling does not impact
technical variation, and so it is recommended that several
technical replicates from each pool be obtained when possible.

Lastly, it is hard to overstate the importance of independent bio-
logical replication, in the form of multiple individuals or multi-
ple pools within each treatment group, as a means to achieve
adequate power and validity for statistical tests.

MSE = 
σ2

σ2

ka
B

A
σ2

e+ + r m n�� �( ) ,

Fig. 2 Experimental designs for the direct comparison of two samples. Boxes,
representing mRNA samples, are labeled as varieties A or B. Subscripts indicate
the number of independent biological replicates of the same treatment.
Arrows represent hybridizations between the mRNA samples and the microar-
ray. The sample at the tail of the arrow is labeled with red (Cy5) dye, and the
sample at the head of the arrow is labeled with green (Cy3) dye. This figure
shows a dye swap (a), a repeated dye swap (b), a replicated dye swap (c) and a
simple loop design (d). For example, in a, sample A, labeled red, and sample B,
labeled green, are hybridized to one array, and then sample A, labeled green,
and sample B, labeled red, are hybridized to another.
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ence sample is available) to assay large numbers of samples that
are collected over a period of time. From a practical perspective,
every new sample in a reference experiment is handled in the
same way. This reduces the possibility of laboratory error and
increases the efficiency of sample handling in large projects.

The most important considerations in choosing an appropri-
ate reference sample are that it should be plentiful, homoge-
neous, and stable over time. Reference samples have been
constructed using complex mixtures of RNA obtained from tis-
sues or cell lines in an attempt to ensure that they can ‘light up’
every spot on an array. Another strategy is to form a pooled refer-
ence from the samples that will be assayed in the experiment.
This ensures that every sample present in the test samples will be
represented in the reference sample and that the relative amounts
of each RNA species will be similar. The advantage of this
approach is that we are not comparing samples that have widely
different RNA concentrations, which obviates some of the diffi-
cult issues of normalization (see review by J. Quackenbush, pages
496–501, this issue)11. Use of a biologically relevant reference
sample can also motivate the choice of this experimental design.
Loops. The simple loop design (Fig. 2d), in which samples are
compared to one to another in a daisy-chain fashion, can be an
efficient alternative to the reference design6. In general, small
loops provide good average precision. However, depending on
the goals of the experiment, large loops may be inefficient. For
example, if an investigator wants to compare every pair of sam-
ples, loops become inefficient when there are more than 10 sam-
ples. In addition, the estimation efficiency of a simple loop is
greatly reduced by loss of just a single array. Designs that inter-
weave two or more loops together or combine loops with refer-
ence designs improve efficiency and robustness by creating
multiple links among the samples. The difficulty presented by
loop designs is that the deconvolution of relative expression val-
ues is not always intuitive. However, the availability of software
tools that can analyze general designs reduces this concern.

Printing the slides
Although a thorough discussion of which probes to spot on a
microarray slide is outside the scope of this review, it is a critical
aspect of design. The arrangement of spots on a slide (Fig. 4)
raises design issues that can impact on normalization and analy-
sis of microarray data12. Groups of spots printed by the same
pins and/or subarrays that may have been printed at different
times lead to correlations among the spots that should be taken
into account. Repeated spotting of the same clone on an array
increases precision2 of the measurements if the spot intensities
are averaged. It can also minimize problems caused by scratches,
dust, and other mishaps that can contaminate the surface of
microarray slides. Repeated spots should be dispersed over the

microarray surface to minimize correlations; however, repeated
spots should always be considered as correlated observations and
treated accordingly in analysis. The use of internal control spots
may also help ensure the quality of the data and can provide
information for calibrating the results of an analysis. Data should
not, however, be standardized using internal controls. The con-
trol spots themselves are subject to random variation, and the
process of standardization can induce spurious correlations in
data that are otherwise uncorrelated. (This point seems to bear
repeating in the literature every 50 years or so13,14.)

Randomization
Randomization of treatment assignments and random sampling
of populations form the physical basis for the validity of statisti-
cal tests15. It is most crucial to apply randomization or random
sampling at the stage of assigning treatments to the experimental
units. If the treatment is something that can be applied to the
units (for example, injection of a drug), then a carefully random-
ized experiment can lead to causal inferences; that is, we can con-
clude that the drug causes the observed effects. If the treatment is
already attached to the units (for example, the sex and strain of a
mouse), then the conclusions of the study are limited to associa-
tions; that is, sex is associated with differential expression of, for
example, androgen receptors. The valid scope of the conclusions
in such studies is contingent on how well the population of inter-
est (both in its mean behavior and its diversity) is represented by
the sample of animals in the experiment. True random sampling
of populations is an ideal that is difficult to achieve, but often a
good representative sample can be obtained.

Randomization can be used at other stages in the microarray
experiment to help avoid or minimize hidden biases. When mul-
tiple technical replicates are used, the dye assignments can be
randomized. Assigning the first sample obtained to Cy5 and the
second one to Cy3 has an obvious potential to introduce biases.
Slides are often printed in batches that can vary in their overall
quality and even within a batch, the order and position on the
printing device can affect results. In the study of Oleksiak et al.1,
slides were numbered (1 through 48 in print order) and for each
hybridization, a slide was chosen by drawing a numbered slip of
paper from a hat.

Lastly, we could consider randomizing the arrangement of
spots on an array. Fisher15 warns of the potential biases that can
arise due to regular arrangements. Ideally, each slide in an exper-
iment might have clones printed in a different arrangement. But,
because of the nature of the printing devices and logistics of
tracking spot identities, randomization would be impractical.
The possibility of position effects within the array is not far-
fetched, but it may be a reality that we simply have to accept with
awareness.

Fig. 3 Experimental designs using a reference RNA sample.
Boxes represent RNA samples, and arrows represent microar-
rays, as in Fig. 2. a, The standard reference design uses a single
array to compare each test sample (A, B, C, and so on) to the
reference RNA. b, A variation uses a dye swap for each com-
parison.

Fig. 4 Common features in the layout of a microarray slide. The fundamental
units on which measurements are obtained are spots containing cDNA clones
fixed to a glass substrate. Spots may vary in size, shape and concentration of
DNA. Robotic printing devices used to generate the spots often work with mul-
tiple printing tips or pins. Printing may also be done in blocks (subarrays),
which were perhaps printed on different days. The same clone (gene) may be
printed multiple times on a single slide.
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Analysis
This review has not touched on issues of analysis, which are,
however, discussed elsewhere in this supplement (see review by 
D.K. Slonim, pages 502–508, this issue)16. A well-designed exper-
iment will often suggest a suitable method of analysis. Analysis-
of-variance models for microarray data were introduced by Kerr
et al.17, and this framework has been extended to account for cor-
relations and multiple sources of variance18,19. Software tools are
available for general-purpose analysis of experiments with multi-
ple sources of variance14, but proper application of these meth-
ods is often not trivial. Until standards of microarray design and
analysis evolve further, we recommend that analysis should be
carried out in collaboration with a statistician.

Examples
The following examples of strategies for microarray experiment
design illustrate some of the points discussed above. Each of
these experiments has its strengths and weaknesses from a design
perspective, and the commentary provided here is intended to
highlight these points. More examples of designs that use both
direct and reference sample comparisons can be found at
http://www.tigr.org/pga.
Pairwise comparisons. Callow et al.20 carried out experiments to
identify differentially expressed genes between genetically altered
strains of mice and wildtype controls. RNA samples were
obtained from eight transgenic and eight control mice, providing
14 residual df (16 mice minus 2 treatments) for testing the treat-
ment effect. Each of the 16 samples was labeled with Cy5 and
compared to a Cy3-labeled pool of RNAs from control mice. An
alternative design for this situation would have been to arrange
eight direct comparisons as dye swaps between transgenic and
wildtype mice. This alternative design provides technical replica-
tion, avoids dye bias and does not require a reference sample.

Kerr et al.21 describe an experiment comparing gene expres-
sion in two cell lines, one of which has been treated with a toxin.
Three aliquots were obtained from each cell line and directly
compared on pairs of microarrays using dye swaps. The experi-
ment lacks biological replication because the aliquots are not
independent. With the extensive technical replication in this

experiment, relative differences
as small as 12% are detectable.
A large number of differences
were detected in this experi-
ment. While some are certainly

biologically relevant, others may reflect chance fluctuations
between the two cell lines and may not be reproducible in repeti-
tions of the experiment. The design could be improved by using
six independent cell lines with random assignment of three to the
toxin treatment.
One-way classifications. Figure 5 illustrates designs of two dif-
ferent experiments involving a single multi-level treatment fac-
tor. The first design is from a survey of mouse mammary tumor
samples (G.A. Churchill, unpublished work). The treatment
factor is strain, with four levels and each strain represented by
three independent tumor samples, providing 8 df for testing dif-
ferences among strains. RNA from each tumor was compared
directly to a reference sample using two arrays in a dye-swap
arrangement.

The second design is from a study of variation in natural pop-
ulations of teleost fish1. There are three populations, and five fish
were sampled from each, providing 12 df to test for differences
between the populations. In this experiment, the direct compar-
isons were arranged as loops. Each sample was measured using
four technical replicates, and dye assignments were balanced. In
both examples, within-treatment group differences can be tested
relative to technical variation. These examples illustrate how
experiments with similar structure at the biological level can be
arranged using very different pairing strategies among the tech-
nical replicates.
Experiments with multiple factors. A study was carried out to
compare gene expression in liver tissues of mice from a gallstone-
susceptible strain (Pera) and gallstone-resistant strains (DBA
and I) on low-fat and high-fat diets (Fig. 6b; B.J. Paigen, pers.
comm.). Each of the six combinations in this 2 × 3 factorial
experiment was represented by two independent pools of three
mice providing 6 df (12 pools minus 6 groups) for testing biolog-
ical effects. Direct comparisons among the strains in this study
are restricted to resistant versus susceptible. The two resistant
strains can still be contrasted, but with less efficiency than the
comparisons of interest.

Jin et al.9 studied expression patterns in two strains of
Drosophila, using both sexes and two ages. Several hundred flies
representing each of the eight combinations of these factors were
used to create pooled RNA samples. Twenty-four microarrays
were used to compare 48 independent labeling reactions, six per
pool, obtained from these RNA samples. All direct comparisons

Fig. 5 Two examples of one-way clas-
sifications with replication. a, In the
tumor survey, three tumor samples
(1–3) were obtained from mice
belonging to four strains (HeN, HeJ,
BALB, YbR). b, In this survey, each
sample was compared using a dye
swap to a common reference sample.
c, In the fish population study, sam-
ples were obtained from fish in each
of three populations (N, S and G). 
d, Direct comparisons among the
samples were arranged as a series of
loops.

Fig. 6 Experimental design for a 3 × 2 factorial experiment. Direct dye-swap
comparisons are made within strains between low- and high-fat diet condi-
tions. Comparisons between strains are restricted to strains susceptible to gall-
stones (Pera) versus resistant (DBA and I) strains.
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were made between the two age groups using six arrays, two with
dye labeling reversed. There are no direct comparisons between
flies that differ in sex or strain. This design reflects the primary
interest of the researchers in the effects of aging on gene expres-
sion and a secondary interest in other factors. In the analysis of
this interesting design, different error terms are used to test the
age, sex, strain, and sex-by-strain interaction effects9. An alterna-
tive design that includes replicate pools and direct comparisons
across all of the treatment factors to achieve equity in precision of
comparisons was proposed by Churchill and Oliver22. These
examples show that the arrangement of pairings in a multifactor
experiment can differentially impact on the precision of different
comparisons.

Conclusions
In summary, the problem of designing a microarray experiment
can be decomposed into three distinct layers. First, replication of
biological samples is essential in order to draw conclusions that
are valid beyond the scope of the particular samples that were
assayed. Second, technical replicates increase precision and pro-
vide a basis for testing differences within treatment groups.
Third, duplication of spotted clones on the microarray slides
increases precision and provides quality control and robustness
to the experiment. Full disclosure of the details of sample prepa-
ration and handling is important to help identify the indepen-
dent units in an experiment and to avoid inflated estimates of
significance or artifactual conclusions.

Statistical quantification of evidence is widely accepted as a
standard requirement in scientific investigation and is preferred
over the qualitative description of observations. A carefully
designed experiment provides a sound basis for statistical analy-
sis and lends itself to simple and powerful interpretation. Putting
experimental design principles into practice is not difficult, and
there are often several design alternatives that will work well for
any given situation. The following are some important points to
keep in mind.

Use adequate biological replication. A common mistake is to
generate an excess of technical replication with little or no inde-
pendent replication of the biological samples. This is akin to
studying the difference in heights of the two sexes by repeatedly
measuring one man and one woman.

Make direct comparisons between samples whose contrasts are
of most interest and use short paths to connect any samples that
might be contrasted.

Use dye swapping or looping to balance dyes and samples.
Always keep the goals of the experiment in mind. Experiments

that are constructed to address a particular question are more
likely to be simple and interpretable compared to experiments
compiled from a haphazard set of conditions.
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