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Genome sequencing efforts will soon generate hundreds of
millions of bases of human genomic DNA containing thousands
of novel genes. In the past year, the accuracy of computational
gene-finding methods has improved significantly, to the point
where a reasonable approximation of the gene structures within
an extended genomic region can often be predicted in advance
of more detailed experimental studies.
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Abbreviations
bp base pair
EST expressed sequence tag
HMM hidden Markov model
IMM interpolated Markov model
LINE long interspersed nuclear element
MDD maximal dependence decomposition
ORF open reading frame
SINE short interspersed nuclear element
TSS transcription start site
WWAM windowed weight array model

Introduction
Identification of all of the genes in the human genome
(and in the genomes of various model organisms) is a major
objective of the human genome project. Recently, as the
genome project has entered the phase of large-scale
sequencing, computational approaches to gene finding
have begun to draw significant attention from the molecu-
lar biology and genomics community. In addition, signifi-
cant advances in gene-finding methodology have taken
place in the past two years, and the current methods are
significantly more accurate, reliable and useful than those
available in the past. Among recent reviews related to gene
finding, we specifically mention a stimulating overview of
the subject by Fickett [1], an excellent summary of avail-
able programs by Claverie [2•], the landmark comparative
study by Burset and Guigo [3••], as well as the more tech-
nical article by Gelfand [4]. Additional information can be
found in the extensive bibliographies maintained by Li
(http://linkage.rockefeller.edu/wli/gene) and Gelfand [5].
Here, we summarize the recent developments in gene-
finding algorithms, highlight open problems in this area,
and discuss future research directions. 

Finding genes in prokaryotic genomes
Gene discovery in prokaryotic genomes is a quite differ-
ent problem from that encountered in eukaryotic

sequences, owing to the higher gene density typical of
prokaryotes and the absence of introns in their protein
coding genes. These properties generally imply that most
open reading frames (ORFs) encountered in a prokaryot-
ic sequence that are longer than some reasonable thresh-
old, such as 300 or 500 base pairs (bp) will likely
correspond to genes. The primary difficulties arising from
this simple approach are that very small genes will be
missed and that the occurrence of overlapping long ORFs
on opposite DNA strands (genes and ‘shadow genes’)
often leads to ambiguities. To resolve these problems,
several methods have been devised that use different
types of Markov models (see below) in order to capture
the compositional differences among coding regions,
‘shadow’ coding regions (coding on the opposite DNA
strand), and noncoding DNA. Such methods, including
ECOPARSE [6], the widely used GENMARK algorithm
[7], and the recently introduced Glimmer program [8],
appear to be able to identify most protein coding genes
with good specificity, but still have difficulties in predict-
ing the precise position of the start of translation.

Some degree of caution must be exercised in using such
statistically-based methods in view of the relatively high
frequency of genetic transformation, the occurrence of lat-
eral gene transfer in many bacteria [9], and other factors
that lead to heterogeneity in gene composition. Thus,
using a principal components-type method to cluster
genes on the basis of codon usage, Medigue et al. [10] par-
titioned Escherichia coli genes into three groups: ‘typical
genes’ (about 70%), ‘highly expressed genes’ (about 15%,
including ribosomal protein genes, elongation factor
genes, and other genes involved in transcription and trans-
lation) and a third group (about 15%) consisting of mostly
laterally transferred genes. (Similar subdivisions may
apply to other bacterial genomes.) The drastic differences
in codon usage observed between these three groups indi-
cates that distinct Markov models could be used to find
and classify genes of different types. Recently a system
called GENMARK Genesis has been developed that auto-
matically clusters ORFs from an uncharacterized bacterial
genome and derives separate Markov models for each
cluster obtained [11]. The possibility that eukaryotic
genomes may also contain distinct clusters of genes is an
interesting open problem [12].

Finding genes in eukaryotic sequences
The remainder of this review is devoted to the more com-
plex problem of finding genes in eukaryotic sequences. At
this point, it is convenient to define a few essential terms
that have specialized meanings in the gene-finding litera-
ture. First, the accuracy of prediction of particular gene
features, such as exons, coding nucleotides, and splice
sites, by a gene-finding method is typically measured in
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terms of the ‘sensitivity’, defined as the proportion of
‘true’ sites (e.g. exons or donor splice sites) that are cor-
rectly predicted, and the ‘specificity’, defined as the pro-
portion of ‘predicted’ sites that are correct. It should be
clear that an accurate and thorough prediction has been
achieved by a method only when the sensitivity and speci-
ficity are simultaneously high. Since most methods seek
primarily to predict coding exons (as opposed to exons cor-
responding to 5′ or 3′ untranslated regions), four types of
exons are typically distinguished: ‘initial exons’ (initiation
codon to first 5′ splice junction); ‘internal exons’ (3′ splice
site to 5′ splice site); ‘terminal exons’ (3′ splice site to stop
codon); and ‘single-exon’ (intronless) genes (initiation
codon to stop codon). As will be seen below, these four
types of exons present different challenges for gene-find-
ing methods, and the methods differ significantly in their
ability to predict the four exon types. 

Transcriptional signals
The most natural way to find genes computationally would
be to mimic as closely as possible the processes of tran-
scription and RNA processing (e.g. splicing and polyadeny-
lation) that define genes biologically. Although this direct
approach to gene finding is not yet feasible, a number of
important signals related to transcription, translation and
splicing are now sufficiently well characterized as to be use-
ful in computer predictions of the location and exon–intron
organization of genes. The transcriptional signals most
often used in gene finding are the initiator or cap signal,
located at the transcription start site (TSS), and the A+T-
rich TATA-box signal, typically located about 30 bp
upstream of the TSS [13]. These core promoter elements
are, however, present in only about 70% of human promot-
ers and, even when present, are not sufficiently precise to
allow reliable prediction of promoter locations (reviewed in
[14]). Even when the full spectrum of characterized tran-
scription factor-binding sites is used in a promoter recogni-
tion algorithm [15], there does not appear to be a significant
improvement in the prediction of precise promoter loca-
tions when tested on novel promoter sequences [14]. This
somewhat disappointing result is probably related to the
variability in the location of transcription factor-binding
sites relative to the location of the TSS and to the difficul-
ty of accounting for their combinatorial activity. Other fea-
tures known to play a role in promoter function, such as
transcriptional enhancers and silencers, CpG methylation,
chromatin structure and DNA curvature, could prove use-
ful in prediction when they are better understood.

The polyadenylation signal appears to have a much sim-
pler structure, comprising a consensus AATAAA hexamer
sequence followed by a more complex signal (not yet com-
pletely characterized), located some 20 to 30 bp down-
stream [16]. Even this signal is not trivial to predict,
however, and recent studies of public expressed sequence
tag (EST) databases have shown that the consensus
AATAAA hexamer is absent from more than half of all 3′
untranslated regions [2•]. Thus, development of improved

methods for identifying the polyadenylation signal and, in
particular, promoter regions, is an important challenge for
the next several years. 

Translational signals
The principal translational signals that have been used in
gene finding are the ‘Kozak signal’, located immediately
upstream of the initial ATG [16], and the termination
codon, useful primarily for its absence (in frame) in coding
exons. Since these signals contain far too little information
to allow discrimination in bulk genomic DNA, reliable pre-
diction of translation start and stop sites may not be possi-
ble until more progress has been made towards predicting
the sites of transcription initiation and termination (see
above), which would dramatically reduce the amount of
sequence that needs to be searched. Using simple weight
matrix descriptions of the Kozak and translation termina-
tion signals in the context of the integrated gene-finding
program GENSCAN [17••], about two thirds (66%) of
translation initiation sites and about three quarters (78%)
of termination codons have been correctly predicted
(Table 1a), with specificities of 84% and 91%, respectively.
Although these levels of accuracy are high enough to be
useful, they are significantly lower than those achieved for
splicing signals (see below), and lead to poorer prediction
of initial and terminal exons than has been achieved for
internal exons (Table 1b).

Splicing signals
Even if one could reliably predict promoter and
polyadenylation signals, and translation start and stop sites
in genomic sequences, this knowledge would generally
help only in predicting the location of the first and last
exons of a gene. Since most vertebrate, invertebrate and
plant genes contain several exons, accurate prediction of
gene structure in these organisms is much more dependent
upon the ability of predictions to pinpoint splice signals.
Nuclear pre-mRNA introns are excised from the primary
transcript by a large ribonucleoprotein complex known as
the spliceosome (reviewed in [18]), which recognizes sites
at the 5′ and 3′ ends of the intron (the donor and acceptor
splice sites, respectively), as well as an internal site known
as the branch point. With a few interesting exceptions (see
[19•]), virtually all spliceosomal introns begin with GT and
end with AG, and this nearly invariant rule is used by the
majority of gene-finding programs to narrow the search
space of possible exon and intron boundaries.

Many early gene-finding methods used simple weight
matrix (independence) models of the position-specific
compositional biases present in 5′ and 3′ splice sites and
of the bias towards pyrimidine nucleotides upstream of 3′
splice sites. More recently, several authors have observed
statistically significant dependencies between positions
within both the donor and acceptor splice sites
[17••,20–22]. Certain observed dependencies between
donor splice site positions can be interpreted in terms of
the thermodynamics of RNA duplex formation between
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U1 small nuclear RNA (snRNA) and the 5′ splice site
region of the pre-mRNA [17••]. Of the dependencies
observed for human acceptor splice sites, some appear to
result simply from the compositional heterogeneity of the
human genome, whereas others probably relate to the
specificity of pyrimidine tract-binding proteins [23]. The
development of more complex splice signal models that
are capable of capturing such dependencies has been a
significant recent trend in the gene-finding literature:
examples include the ‘maximal dependence decomposi-
tion’ (MDD) and ‘windowed weight array’ (WWAM)
models [17••], hidden Markov models [20], decision tree
methods [21] and multilayer neural networks [22]. These
more complex models typically yield significant, but not
dramatic, improvements in splice site discrimination over
the simpler models which assume independence
between positions. The final level of accuracy achieved
depends critically on whether prediction is measured ‘in
isolation’ or in the context of an integrated gene-finding
method (see below).

This important distinction between ‘isolated’ and ‘integrat-
ed’ splice-site prediction can be illustrated by comparing
the performance of the MDD 5′ and WWAM 3′ splice site
models in isolation with that achieved when these models
are integrated into GENSCAN [17••]. By themselves, the

specificity of these models is 34% for 3′ splice sites and
36% for 5′ splice sites at a 50% sensitivity threshold (i.e. at
a threshold that identifies half of the true sites) in bulk
genomic sequences [23], strongly suggesting that splice-
site selection is dependent on factors other than the
strength of the splice signals. This conclusion is consistent
with a large amount of experimental data showing that
splice-site usage is often influenced by specific exonic
and intronic enhancer (and repressor) signals located some
distance from the splice junctions [24]. On the other hand,
when additional types of information, such as the compo-
sitional properties of exons and introns and the reading
frame compatibility of adjacent exons, are incorporated
into the integrated GENSCAN model, the accuracy of
prediction improves dramatically. In particular, sensitivity
increases to 91% of 5′ splice sites and 89% of 3′ splice sites
from the Burset and Guigo data set [3••] at specificity lev-
els of 89% and 85%, respectively (Table 1a), and fully 90%
of internal exons were predicted exactly with 80% speci-
ficity (Table 1b). These latter numbers may be compared
with accuracy data reported using the MZEF computer
program (78% sensitivity, 86% specificity), a recently
introduced method designed specifically to predict inter-
nal coding exons [25•]. Although these numbers are quite
promising, it should be emphasized that the accuracy for
larger genomic contigs containing multiple genes and
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Table 1

Accuracy of GENSCAN for different signal and exon types.

(a) Prediction of individual splice sites and translational signals.

Type of signal Type of exon Annotated exons Predicted exons
Number % Correctly predicted Number % Correctly predicted

Initiation Initial only 570 66 450 84
Termination Terminal only 570 78 487 91
5′ splice site Initial only 570 88 450 89
5′ splice site Internal only 1510 93 1682 89
5′ splice site Initial and internal 2080 91 2132 89
3′ splice site Terminal only 570 81 487 92
3′ splice site Internal only 1510 92 1682 83
3′ splice site Internal and terminal 2080 89 2169 85

(b) Accuracy for initial, internal and terminal exons.

Exon type Annotated exons Predicted exons
Number % Exactly % Partially % Missed Number % Exactly % Partially % Wrong

Initial 570 65 25 9 457 81 9 10
Internal 1510 90 5 4 1707 80 11 8
Terminal 570 76 8 15 509 84 6 8
All types 2650 81 10 8 2678 81 10 9

Accuracy statistics are shown for forward-strand exons predicted by the GENSCAN program [17••], as tested on the Burset and Guigo dataset of
570 vertebrate gene sequences [3••]. (a) Accuracy is shown for four types of signals: initiation codons, termination codons and 5′ and 3′ splice
sites. For each signal type, the number of (true) sites according to the GenBank CDS (coding sequence) annotation and the percentage of sites
predicted correctly by GENSCAN are shown in columns 3 and 4, respectively. Columns 5 and 6 show the number of sites predicted by
GENSCAN and the percentage of predicted sites that were correct, respectively. For 5′ and 3′ splice sites, accuracy data are also shown
separately for initial versus internal exons, and internal versus terminal exons, respectively. (b) Accuracy data at the exon level. The percentages of
annotated exons that were predicted exactly (both endpoints correct), predicted partially (one endpoint correct) or missed (not overlapped by a
predicted exon) are listed in columns 3, 4 and 5, respectively. Columns 7, 8 and 9 show the percentages of predicted exons that were exactly
correct (both endpoints correct), partially correct (one endpoint correct), or wrong (not overlapping an annotated exon), respectively. In addition,
five single-exon genes were predicted by GENSCAN in this set (not given a separate row, but included in the totals).



significant amounts of intergenic DNA is likely to be
somewhat lower for both programs. 

Markov sequence models
Compositional differences between coding and noncod-
ing DNA were recognized very early on and a number of
methods were developed in the mid to late eighties that
used such differences in order to identify putative coding
regions in genomic DNA (reviewed in [2•]). The prolifer-
ation of properties reported to be useful in identifying
genes prompted Fickett and Tung [26] to undertake a
systematic comparison of more than twenty different
compositional properties in terms of their ability to dis-
tinguish coding from noncoding DNA. The conclusions
of this study were that measures based on reading-frame-
specific hexamer composition gave the best discrimina-
tion, and most subsequent gene-finding methods have
used hexamer composition in one form or another.

Several recent gene-finding methods use Markov models
of coding and noncoding regions in order to classify
sequence segments as either exons or introns. Simply
stated, a Markov model of order k captures local depen-
dencies in sequence at the level of k+1-mers, for exam-
ple, a fifth-order model reflects dependencies in
hexamers. In a homogeneous model, all positions are
treated the same, whereas in an inhomogeneous model,
different transition probabilites are used at different posi-
tions. GENSCAN [17••] uses a homogeneous fifth order
Markov model of noncoding regions, and both GEN-
SCAN and GENMARK [7] use a three periodic (inhomo-
geneous) fifth order Markov model of coding regions
(illustrated in Figure 1a). In the former model (illustrated
in Figure 1b), the conditional probability of the identity
of the next nucleotide depends on the identities of the
previous five bases, thus incorporating biases in the hexa-
mer composition. The latter model (Figure 1a) differs
from this in that separate conditional probabilities are
used for nucleotides that occur in the three distinct codon
positions, resulting in a model that can account for the
differential usage of hexamers in the two out of frame
positions. This relatively complicated model thus incor-
porates a combination of biases related to amino acid
usage, codon usage, di-amino acid and dicodon usage, as
well as other factors (see also [12]). 

The parameters for such models are typically estimated
using the maximum likelihood method, that is, by using
the observed conditional frequencies of an appropriate
training set of known genes to estimate the correspond-
ing conditional probabilities. An alternative approach,
proposed recently by Salzberg et al. [8], is to use ‘interpo-
lated Markov model’ (IMM) estimation, in which the
conditional probabilities of a high order Markov chain
model are estimated from an average of lower order con-
ditional frequencies. Some authors have also used sepa-
rate coding and/or noncoding region models for
sequences of high and low C+G composition to account

for the well known ‘isochore’ organization of the human
genome [27,28].

Beyond simply identifying gene components such as splice
signals or coding exons in isolation, several recent methods
use more elaborate models of gene architecture that
require specific subcomponents of a gene to occur in the
appropriate order, and allow exon and intron length distri-
butions to be accounted for. One way to combine several
different types of sequence generating models into a uni-
fied scheme is to use a ‘hidden Markov model’ (HMM)
framework (Figure 1c). In this approach, first applied to
gene finding by Haussler and colleagues [6] and also used
by Henderson et al. [20], transitions between submodels
corresponding to particular gene components are modeled
as unobserved (‘hidden’) Markov processes (the upper cir-
cles in Figure 1c), which determine the probability of gen-
erating particular (observable) nucleotides (the lower
circles in Figure 1c). The HMM architecture is in fact
quite general and has been applied successfully to many
problems in computational biology and in other fields [29].

All HMMs have a limitation in that blocks of the same
hidden-state type (e.g. an exon considered as a block of
‘coding’ states) can only be modeled as geometric (expo-
nential) random variables. Since exon and intron lengths
appear to be constrained by factors related to pre-mRNA
splicing (e.g. [30]), and do not exhibit geometric distribu-
tions, more general models are required to accurately
account for the lengths of exons and introns in real genes.
A model in which subsequent states are generated accord-
ing to a Markov chain but have arbitrary (instead of fixed
unit) length distributions is called a ‘semi-Markov’ model
(e.g. [31], illustrated in Figure 1d). In the general model
architecture used by GENSCAN [17••] and Genie [32•]
(Figure 1e), DNA nucleotides (represented by small cir-
cles) are generated according to the probabilistic rules
derived from an underlying (hidden) semi-Markov
process (represented by the large circles above). Such a
model structure has been described variously as an
‘explicit state duration HMM’ [29], a ‘generalized HMM’
[32•], or a ‘hidden semi-Markov model’ [33]. A key practi-
cal advantage of (hidden) Markov-type models is that effi-
cient (linear time) recursions can be devised in order to
determine, for example, the most likely gene structure
corresponding to a given sequence [29,33,34]. Another
important distinction between model architectures used
in gene finding is that some programs (e.g. GENSCAN
and GENMARK) use explicitly double-stranded models
that allow for the occurrence of multiple genes on either
or both DNA strands, whereas most others (e.g.
FGENEH [35], Genie and VEIL) analyze only one strand
at a time and assume that the input sequence contains a
single complete gene. 

Sequence similarity 
Sequence similarity is a very powerful, but not infallible,
type of evidence used to assign function to novel

Finding the genes in genomic DNA Burge and Karlin    349



350 Sequences and topology

Figure 1

The five different types of Markov models discussed in the text are illustrated. Throughout, circles represent DNA nucleotides or more general
‘states’ and arrows indicate dependencies. (a) Three periodic fifth order Markov models. Circles represent consecutive DNA bases, numbers
indicate the codon position, and the arrows indicate that the next base is generated conditionally on the previous five bases and on the codon
position. (b) Homogeneous fifth order Markov model. Circles represent consecutive DNA bases, and the arrow indicates that the next base (i) is
generated conditionally on the previous five (i–5,..., i–1) in the sequence. (c) Hidden Markov model. The upper circles represent unobserved or
‘hidden’ states, perhaps corresponding to whether the position is coding or noncoding; arrows between upper circles indicate that the states are
generated according to a (first order) Markov chain. The lower circles correspond to (observable) DNA bases; downward arrows indicate that each
base is generated conditionally on the identity of the corresponding hidden state. (d) Semi-Markov model. The circles represent hidden states;
single-headed arrows indicate the Markov dependence of the hidden states; double-headed arrows represent the (variable) lengths of the hidden
states. (e) Hidden semi-Markov model. The large circles and associated arrows are as in (d). The large downward arrows indicate that the
nucleotides (small circles) are generated conditionally on the identity and length of the corresponding hidden state. 
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sequences. In gene finding, sequence similarity can be
used in at least six different ways, outlined below. First, a
direct comparison of a genomic sequence with databases
of expressed sequence tags (ESTs), using programs such
as BLASTN 2.0 [36] and AAT [37], can identify regions
of a contig that correspond to processed mRNA. Second,
comparison of a genomic sequence that is translated in all
six reading frames with protein sequence databases,
using a program such as BLASTX 2.0 [36], can identify
probable coding regions. Third, ‘spliced alignment’ of a
genomic sequence containing a single complete gene
with a homologous protein sequence, using PRO-
CRUSTES [38], may enable reconstruction of the exon
and intron organization of the gene. Fourth, comparison
of predicted peptides, derived from programs such as
GENSCAN or FGENEH, with protein sequence data-
bases can be used to confirm predictions and/or to assign
putative function to predicted proteins. Fifth, a compari-
son of a translated genomic sequence with a translated
genomic or cDNA sequence using TBLASTX 2.0 [36]
can identify similarities among coding regions. Finally,
comparison of genomic sequences with homologous
genomic sequences from closely related organisms (e.g.
human versus mouse or chicken), using BLAST 2.0 [36]
and pairwise alignment programs such as CLUSTAL W
[39], can be used to identify conserved regions, which
often correspond to coding exons or important transcrip-
tional or splicing signals.

Each of these methods can provide useful information
about gene locations, as well as clues to gene function,
although similarity-based methods are currently able to
identify only about half of all human genes, and this pro-
portion is increasing rather slowly. It should also be kept in
mind that similarity-based methods are only as reliable as
the databases that are searched, and apparent homology
can be misleading at times. For example, cDNA clones
may occasionally correspond to incompletely processed
messages containing one or more introns, which could lead
to misclassification of a genomic segment as an exon rather
than an intron. Automatic similarity-based methods may
also be led astray by the inclusion of (potentially incorrect)
predicted proteins in sequence databases; this problem
could be easily avoided if the sequence databases would
require more detailed computer readable annotations of
the source of each annotated coding region (e.g. complete
cDNA sequence, partial cDNA, GENSCAN and GRAIL
[40] predictions, etc.). Even spliced alignment methods
[38,41•] can be misleading if the target (database) protein
used is not a true ortholog of the source (genomic) gene
and only shares some domains, likely causing portions of
the gene to be missed. One possible solution to this dilem-
ma is to use a combination of composition-based and
homology-based methods, as in the recently developed
GSA program (X Huang, H Zhou, AR Kerlavage, MD
Adams, personal communication), which combines data-
base similarity information from the AAT program [37]
with exons predicted by GENSCAN. 

Besides sequence similarity to individual known pro-
teins, another possible approach is to search translated
genomic sequences for the occurrence of the short pep-
tide motifs that are characteristic of common protein fam-
ilies, such as zinc finger motifs, ATP and GTP-binding
motifs, and general PROSITE patterns. For example,
some of the regular expressions characteristic of the ser-
ine protease family include: CGGS[ILMV][ILMV];
[FWY][IV][FLMV][ST]AAHC; and G[DE]SGGP[FILMV]
(where [XZ] indicates the occurrence of either residue X or
residue Z). For example, a genomic sequence were found
to contain all three of these motifs on the same strand, and
in the appropriate order, that might indicate the presence
of an undetected serine protease gene. For this type of
approach to become a useful tool for genome analysis will
require studies of the frequencies of particular peptide pat-
terns in (conceptually translated) noncoding genomic
DNA, in order to establish appropriate benchmarks for sta-
tistical significance. 

Repetitive elements
Just as sequence similarity to known proteins can help to
identify probable coding regions, similarity to known
classes of interspersed repeats, such as LINEs and
SINEs (reviewed in [42]), can be useful in identifying
probable noncoding regions. These types of elements
are so abundant in the human genome that powerful
repeat-finding programs such as RepeatMasker (Smit
and Green, personal communication) can often classify
as much as 30 to 40% of a human genomic contig as
repetitive elements [42]. The presence of such repeats
in the 5′ and/or 3′ untranslated regions of some cDNAs
makes it absolutely essential to prescreen genomic
sequences with a program such as RepeatMasker or
Censor [43] before BLAST searching it against the pub-
lic EST database, for example.

Open problems and future directions
Existing gene-finding programs, although signifcantly
advanced over those available a few years ago, still have
several important limitations. First, most programs only
predict protein coding genes and not genes whose prod-
ucts function exclusively at the RNA level. Although spe-
cialized programs exist that identify tRNA genes [44], and
rRNA genes may generally be identifiable through homol-
ogy, no method has yet been developed for the identifica-
tion of novel spliced or unspliced functional RNA genes
such as XIST [45]. Another limitation is that no current
method can deal effectively with overlapping genes in
eukaryotes, and prediction of multiple genes in a single
sequence is still difficult. This latter challenge is illustrat-
ed in Figure 2, which compares the GENSCAN predicted
genes of a 66 kb portion of the human MHC class II region
[46] with those annotated in the GenBank entry (accession
number X66401). Although accuracy at the exon level is
quite high (34 of 40 = 85% of annotated coding exons are
predicted exactly and 34 of 37 = 92% of predicted exons
are exactly correct), only one out of five genes is predicted
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perfectly, and one of the predicted genes (GS2) corre-
sponds to the fusion of exons from two annotated genes
(TAP1 and LMP7 — see Figure 2).

As promoter regions often correspond to CpG islands,
one approach, which might help to ‘segment’ a long
genomic sequence into regions corresponding to single
genes, would be to prescreen the sequence for CpG
islands, identified using, for example, score-based statis-
tics [47]. In this approach, scores are assigned to local
sequence features (e.g. dinucleotides and trinucleotides)
that are proportional to the logarithm of the ratio of their
frequency in target regions (e.g. known CpG islands and
coding regions) to that observed in background genomic
DNA. Statistical significance thresholds are then used to
define significantly high scoring regions of a sequence
(e.g. the predicted CpG islands). Another approach for
single-gene segmentation of a genomic region is to use
the locations and polarities (DNA strands) of matches to
5′ and 3′ ESTs [48]. 

Finally, and perhaps most importantly, the problem of multi-
ple protein products that correspond to a single gene through
alternative splicing, alternative transcription and/or alterna-
tive translation has not yet been dealt with effectively,
although some current gene-finding programs are able to
predict sets of alternative exons or genes. Alternative splicing
in particular is an important regulatory mechanism in higher

eukaryotes, as exemplified by the elaborate regulatory cas-
cade involved in Drosophila sex determination (reviewed in
[18]) and by the regulation of the fruitless gene that is
involved in courtship behavior in the male Drosophila [49].
Aside from a few well-studied cases, however, the rules gov-
erning alternative exon and intron choice are not well under-
stood, presenting significant challenges to both experimental
and computational biologists. 
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Figure 2

A schematic representation of predicted and annotated genes in a 66 kb portion of the human MHC II region (GenBank accession number
X66401) is shown. Annotated genes are labeled according to the names given in the GenBank annotation; predicted genes are labeled GS1
through GS4 as they occur along the sequence. Genes coding on the forward and reverse DNA strands are shown above and below the
sequence line, respectively. Predicted exons are shown in grey, annotated exons in black; the shape of the exon indicates its type, as shown in the
key. Exon sizes and locations are drawn approximately to scale. 
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