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Abstract

Air traffic growth and especiallyhubs development
causenew significantcongestionandgrounddelayson
majorairports.

Accuratemodelsof airporttraffic predictioncanpro-
vide new tools to assistgroundcontrollersin choosing
the besttaxiwaysandthe mostadaptedholding points
for aircraft. Suchtools could also be usedby airport
designersto evaluatepossibleimprovementson airport
configurationsandairportstructure.

In this paper, a groundtraffic simulationtool is pro-
posedandappliedto RoissyCharlesDeGaulleandOrly
airports. A global optimizationmethodusinggenetic
algorithmsis comparedto a1-to-nstrategy to minimize
time spentbetweengateandrunway, while respecting
aircraftseparationandrunwaycapacity.

In order to comparethe efficiency of the different
optimizationmethods,simulationsarecarriedout on a
onedaytraffic sample,andgrounddelaydueto holding
pointsor taxiway lengtheningis correlatedto thetraffic
densityon theairport.

1 Intr oduction

Traffic delaydueto airport congestionandgroundop-
erationsbecomesmoreandmorepenalizingin thetotal
gate-to-gateflight cycle. This phenomenoncan be in
a large part attributed to recenthubsdevelopment,as
all departuresandarrivalsaretendingto be scheduled
at the sametime. Moreover, many ATC problemsand
environmentalinefficienciescan appearas a result of
taxi queueingandtake-off time uncertainty. As airport
designersarein chargeto build new taxiwaysto reduce
congestionandimprovegroundoperations,groundsim-
ulation toolsbecomeessentialto validatetheir choices
beforerealization.

Even if most researchprojectsare concentratedon
decisionmaking tools for airspacecontrollersand do
notconsidergroundoperationsutilities, highly detailed

models of airport operationsalready exist, such as
SIMMOD1 or TAAM2. They canbeusefulto evaluate
qualitatively the relative effectsof variousairport im-
provements.The DP3 project ([IDA

�
98]) focuseson

improving theperformanceof departureoperations.Fi-
nally, a componentof the TARMAC4 project focuses
on theATC-relatedtraffic planningsystemsfor airport
movements.

In this paper, a groundtraffic simulationtool with a
conflict resolutionmoduleis introducedandtestedona
onedaytraffic sampleonRoissyCharlesDeGaulleand
Orly airports.Differentoptimizationstrategiesareused
to find the besttrajectoryand the most adaptedhold-
ing pointsfor taxiing aircraft. Thegoal is to minimize
the time spentfrom gateto take-off or from landingto
gate,respectingthe separationwith other aircraft and
the runway capacity. During the optimizationprocess,
actualoneway taxiways,operationalairportconfigura-
tionsandspeeduncertaintyareconsidered.

2 Problemmodeling

Theproblemis to find, for eachaircraft,anoptimalpath
from its gateto agivenrunwaytake-off positionor from
its runway exit to its gateposition, respectinga given
separationbetweenaircraft.

An optimal pathcan have differentdefinitions: for
example,thelengthof thepathor thetotal taxiing time.
At thesametopic,holdingon a taxiwaycanbemoreor
lesspenalizingthanincreasingthelengthof thepathor
holdingat thegateposition.

1SIMulationMODel (FAA)
2TotalAirspaceandAirport Modeler(PrestonGroup)
3DeparturePlaner
4Taxi andRampManagementAnd Control(DLR)
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Figure1: Roissyairportgraph- Exampleof shortestandalternatepaths
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Figure2: Orly airportgraph- Exampleof shortestandalternatepaths
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Thereforea global optimumcriteria will have to be
definedin the following. However, thepurposeof this
articleisnottodiscussthechoiceof suchcriteria,which
canbe refinedwithout modifying the algorithmitself,
consideringmany differentfactorsrelatedto theairport
geometry, thetraffic, or airlinespreferences...

By theway, it is quitedifficult to predictwith a good
accuracy the future positionsof aircraft on taxiways.
First of all, theexactdeparturetime is generallyknown
only a few minutesin advance(many factorscancause
delays),andtheexactlandingtimedependson therun-
way sequencing.Hence,the proposedmodel should
take into accountspeeduncertaintyand must be reg-
ularly updatedwith realaircraftpositions.

2.1 Air port structure

An airport is describedby its gates,taxiwaysandrun-
ways.Differentkind of taxiwayscanbedifferenced:

� Gate specific access(entries, forward exits or
push-backs),characterizedby avery low speed;

� Runways access(entries and exits), containing
the actualholding pointsbeforetake-off andexit
pointsafterlandingwith specificspeedlimitations;

� Taxiways intersectingrunways, with accessre-
strictions;

� Simpletaxiways,wherespeedlimitations is mod-
eledasa functionof theturningrate(figure3).

Connectionsbetweentaxiwaysare limited (it is not
alwayspossibleto proceedfrom a taxiway to another,
even if they are intersecting). The airport description
specifyusabletaxiwaysconnections.

Thus,the airport is definedby a graph: links repre-
sentconnectionsbetweentaxiwayswhereasnodesare
taxiways themselves, gate positions, and landing or
take-off points. The cost from a taxiway nodeto its
connectednodesis the time spentto proceedvia this
taxiway, taking into accountspeedlimitations due to
this taxiway. Thecostfrom theothernodes(gatesand
runwaypositions)to theirconnectednodesis null.

Figure 1 representsthe graphsof Roissyand Orly
airports. Thesegraphsareobviously connected.Clas-
sicgraphalgorithmscanbeusedto computealternative
pathsfor aircraft:
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Figure3: Speedlimitation asa functionof turningrate
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algorithm [Pea84] can computethe best
pathandthecorrespondingminimaltimespentbe-
tweentwo givennodes(gateandrunwayentryfor
example).

� A Dijkstra algorithm[AMO93] cancomputebest
pathsandcorrespondingminimal time spentfrom
agivennodeto everyothernode.

� A RecursiveEnumerationalgorithm[MJ96] using
the Dijkstra’s resultcancomputethe � bestpaths
from a givennodeto another.

� A BranchandBoundalgorithm[HT95] cancom-
puteall alternatepathslengtheningthe bestpath
lessthanagivendistanceor time.

2.2 Air craft model

Aircraft aredescribedby their flight-plan(ident,depar-
ture or arrival time, gateposition, requestedrunway,
eventually their CFMU slot...), their wake turbulence
category (low, mediumor high) and their take off or
landingdistance.

In order to perform conflict detection,a model for
aircraftseparationis defined.This modeltakesinto ac-
countrunwaysarea,90 metersaway from eachsideof
the runway (or 150 metersaway on badweathercon-
ditions). On thesearea,aircraft areconsideredon the
runwayevenif they arenot takingoff or landing.

Aircraft separationmodelis definedasfollows :

� aircraft on gate position are separatedwith all
otheraircraft.

� The distancebetweentwo taxiing aircraft must
neverbelower than60 meters.

� No morethanoneaircraftat a timecantake off or
landona givenrunway.
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� A time separationof 1, 2 or 3 minutes(depending
on the aircraft category) is necessaryafter a take
off to clearnext takeoff or landingfrom wake tur-
bulence.

� Whenanaircraftis proceedingfor takeoff or land-
ing onagivenrunway, otheraircraftcanbetaxiing
onthesamerunwayareaonly if they arebehindthe
proceedingone.

2.3 Speeduncertainty

Speeduncertaintyis modeledasa fixed percentageof
the initial definedspeed(which is function of proce-
duresandturning rate). Therefore,an aircraft is con-
sideredto occupy multiplepossiblepositionsata given
time.

Separationis ensuredif all of thepossibleaircraftpo-
sitionsareseparatedfrom others,asdefinedbefore.

Whenanaircraft is following anotherone,its speed
uncertaintywill bereducedasthepilot won’t go faster
thanthefirst one.

Speeduncertaintyreducesthevalidity periodof pre-
dictions.Thus,simulationswith speeduncertaintywill
becarriedout with a lower timewindow (see2.5).

2.4 Air craft maneuvers

In orderto minimizethetotaldelayandto ensuresepa-
rations,thepathof anaircraftcanbemodifiedandair-
craft canhold positionat thegate,on taxiway or queue
at theholdingpoint beforetakeoff.

Thus,agroundcontrolorderis describedby :

� The path that the aircraft must follow, choosen
amongthe computedpossiblepathsfor the air-
craft;

� Eventually, theholdingposition� on thispathand
thetime � until which theaircraftmustholdon.

In orderto performacceptablemaneuvers,only one
holdingordershouldbegivento thepilot ata time,and
proposedalternativepathsshouldnot leadanaircraftto
usethesametaxiway twice.

With sucha holding model (hold at position � un-
til time � ) uncertaintiesdefinedbeforecanbereduced,
while referencinga preciseholdingpositionanda pre-
ciseendholdingtime(seefigure4).
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2.5 Simulation model

As theaircraft futurepositionsandmovementsarenot
known with agoodaccuracy, it is necessaryto regularly
updatethesituation,every � minutesfor example.By
thesametime, looking a long periodaheadis not pos-
sibleaspredictionsarenot goodenough.

Consequentlya time window 	�
��� is defined.
Only aircrafttaxiing in thetimewindow will beconsid-
ered.Thetimewindow will beshiftedevery � minutes,
the problemreconsideredanda new optimizationper-
formed(seefigure5).

At each simulation step (every � minutes), traf-
fic prediction is performedfor the next 	�
 minutes
andpairsof conflictingaircraftpositionsareextracted.
Conflict resolutionfor this simulationstepconsistin
choosingfor eachaircraftapathamongthegivensetof
possiblepathsandanoptionalholdingpointandtimeto
ensureseparations.
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2.6 Global optimum criteria

In the currentversion,the global criteria to minimize
is definedby thetotal rolling time (includingqueueing
for runwaytime),addedto thetimespentin lengthened
trajectory. With this definition, lengtheningtrajectory
appearsto betwice morepenalizingthanholdingposi-
tion.

3 A*: 1-to-n strategy

In this strategy, aircraft aresortedandconsideredone
aftertheother.

Theoptimizationproblemis reducedto oneaircraft:
the algorithm must find the bestpath and/or the best
holding point for the aircraft, taking into accountthe
trajectoriesof theotheraircraft alreadyconsidered.In
this point of view, first consideredaircrafthavepriority
on lastconsideredaircraft.

3.1 Graph modeling

The1-to-nstrategy for anaircraftcanbemodeledasa
graphexplorationproblem:

� A nodeof thegraphis apositionin apath��� of the
aircraftat time � .

� An heuristicfunctionfor this nodeis theminimal
remainingtime to reachtheendof thepath.

� If a noderepresentsa conflictingpositionwith al-
readyconsideredaircraft,it hasno son.

� Eachnonconflictingnodehastwo sons:

– Thefirst sonis thenext positionin thesame
path� � at time ����� (theaircraftgoforward).
Thecostto reachthis sonis � .

– The secondsonis the samepositionat time
����� (the aircraft holdspositionat time � ).
The costto reachthis sonis � , asa delayis
givento theaircraft.

� Therootnodesarethefirst positiononeachpath�
of theaircraftat currenttime ��� .

� The terminalnodesarethe onesdescribinga non
conflictingpositionof theaircraftat time ������	�
 .

An A* algorithmcaneasilyfind thebestsolutionfor
theaircraft.

3.2 Sorting method

As last consideredaircraft are extremely penalized
(they must avoid all first consideredaircraft) the way
to sortaircraft is a determiningfactor.

A simpleway to assignpriority levels is to consider
the flight-plan transmissiontime to the ground con-
trollers.

This option seamsthe mostrealisticasgroundcon-
trollerscanhardlytake into accountanaircraftwithout
its flight-plan. In the simulationcontext, this is equiv-
alentwith sortingaircraft by their departureor arrival
time.

However, this optionmustberefined:

� As landingaircraftcan’t hold positionbeforeexit-
ing runway, theirpriority level mustbehigherthan
all takingoff aircraft.

� Queueingfor runway aircraft shouldbe sortedin
their queueorder.

In order to satisfy theseprinciples,a time 	�� is af-
fectedto eachaircraftasa functionof its begining time
	�� andits remainingtime ��� :
	��� !	"�#�$��� for departures,
	 �  !	 �&% �('*)(+�, for arrivals.
Aircraft aresortedby increasingvaluesof 	 � .

4 GeneticAlgorithms

In thesestrategies, classicalGeneticAlgorithms and
EvolutionaryComputationprinciplessuchasdescribed
in theliterature[Gol89, Mic92] areused.Thealgorithm
is usedevery � minuteson theproblemdefinedin sec-
tion 2.5.

Two strategies are developed: in the first one, the
algorithmfindsa pathandanoptionalholdingposition
for eachaircraft. In the secundone,the geneticalgo-
rithm findsa pathanda priority level for eachaircraft,
andan A* algorithmis usedto computethe resulting
trajectories.

4.1 Data structure

During eachoptimizationprocess,eachaircraft trajec-
tory is describedby its own parameters:

� The first strategy needs - numbers( . , � , � ) for
eachaircraft: . is the numberof the path, � and
� the evantualholding position for the aircraft (if
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� is reachedafter � , the aircraft doesnot stop)as
detailedin section2.4.

� Thesecundstrategy needs� numbers( . , �*,(/�) ) for
eachaircraft: . is thenumberof thepathand�*,(/�)
its priority level.

4.2 Fitnessfunction

For the two strategies,thefitnessfunctionmustensure
thatasolutionwithoutany conflict is alwaysbetterthan
a solutionwith a conflict. Consequentlyit wasdecided
that the fitnessof a solutionwith a conflict shouldbe
lessthan 01 andthefitnessof asolutionwithoutany con-
flict morethan 01 .

Thus,for a solutionwith .32 remainingconflicts,

4  �
�#�$. 2

For asolutionwithoutany conflict,

4  �
� �

�
�5�7698�;: 0

< � �>= �
where

< � is thedelayof aircraft / and = � the time spent
by aircraft / in lengthenedtrajectory.

4.3 Crossover operator

Theconflict resolutionproblemis partiallyseparableas
definedin [DA98, DAN96]. In order to increasethe
probability of producingchildrenwith a betterfitness
than their parents,principlesappliedin [DA98] were
applied. For eachaircraft / of a populationelement,a
local fitness

4 � is definedas:

� for anaircraftwith . 2 �@? conflicts,4 �A ��B?C?�?ED#.32 ;
� for anonconflictingaircraft

4 �A < �F�>=G� .
The crossover operatoris presentedon the figure 6.

Firsttwo populationelementsarerandomlychosen.For
eachparent

�
and H , fitness

� � and H � of aircraft / are
compared.If

� ��I H � , thechildrenwill take aircraft /
of parent

�
. If H �JI � � , thechildrenwill take aircraft

/ of parent H . If
� �LK H � childrenrandomlychoose

aircraft
� � or H � or evena combinationof

� � and H � .
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Figure6: Crossoveroperator

4.4 Mutation operator

For eachcandidateto mutation,parametersof an air-
craft having oneof theworst local fitnessaremodified.

Thecrossoverandmutationoperatorsarequitedeter-
ministicat thebeginningasmany conflictshaveto beto
solved.They focusonmakingfeasiblesolutions.When
solutionswithout conflict comein thepopulation,they
becomelessdeterministic.

4.5 Clusters

In orderto lower the complexity of the problemasof-
ten aspossible,a transitive closureis appliedon con-
flicting aircraftpairsandgivesthedifferentclustersof
conflictingaircraft[DAN96]. Thedifferentclusterswill
besolvedindependentlyatfirst. If theresolutionof two
clusterscreatesnew conflictingpositionsbetweenthem,
the two clustersareunified andthe resultantclusteris
solved.

4.6 Sharing

Theproblemis verycombinatorialandmayhavemany
local optima. In orderto prevent the algorithmfrom a
prematureconvergence,thesharingprocessintroduced
by Yin andGermay[YG93] is used. The complexity
of this sharingprocesshasthegreatadvantageto be in
.NMPOCQ�RS.3T (insteadof . 1 for classicalsharing)if . is the
sizeof thepopulation.

A distancebetweentwo chromosomesmust be de-
fined to implementa sharingprocess.Defining a dis-
tancebetweentwo setsof U trajectoriesis not very
simple. In the experiments,the following distanceis
introduced:
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U

= \ ] (resp = ^ ] ) is the /`_ba aircraftpathlengthof chromo-
some

�
(resp H ). As thepathsaresortedaccordingto

their length,the distanceincreaseswith the difference
of lengths.

4.7 Ending criteria

As time to solve a problemis limited, the numberof
generationsis limited: aslong asno availablesolution
is found,thenumberof generationis limited to cC? . The
algorithm is stopped�d? generationsafter the first ac-
ceptablesolution(with no remainingconflict) is found.

5 Experimental results

5.1 Simulations

Simulationsare carried out with real flight plans of
RoissyCharlesDe GaulleandOrly airportson a com-
pleteday(May �BeCfd_ba 1999).

Threestrategiesarecompared:

� in the “1-to-n method”, aircraft aresortedasde-
scribedin 3.2. They keepthe samepriority level
duringall thesimulationandanA* algorithmfinds
thebestsolution.

� in the“Global method”, ageneticalgorithmfinds
a path and an optional holding position for each
aircraftin orderto minimizetheglobalcriteriade-
scribedin 2.6.

� in the “Mixed global method”, a geneticalgo-
rithm findsa pathanda priority level for eachair-
craftandthefitnessfunctionis computedby anA*
algorithmappliedon sortedaircraft.

Simulations parameters:
Timewindow : 	 
  gcihj.
Simulationstep: �k l�dhm.
Speeduncertainty: no p�q?sr
GA Populationsize: �C?C?
GA numberof generations:cd?
GA Crossover rate: t�?sr
GA Mutationrate: �(c�r
GA Selectionprinciple: stochasticreminderwithout

replacement
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Figure7: Meandelayasa function of the numberof
moving aircraft.
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Figure8: Numberof aircraftasa functionof time.

5.2 Comparing the strategies

As Roissy and Orly simulation resultshas given the
samerelative conclusionsabout the 3 strategies ef-
ficiency, figures related in this article only concerns
RoissyCharlesDe Gaulleairport.

Figure 7 gives the meandelayas a function of the
numberof aircraftmoving on the taxiwaysfor the dif-
ferentmethods.Whennumberof aircraftincreases,the
mixedmethodappearsto bethebestone.

Figure8 givesfor thedifferentstrategiesthenumber
of aircraftsimultaneouslymoving asafunctionof time.
It appearsthatthemixedmethodkeepsa lowernumber
of moving aircraft during heavy time periods: a good
resolutionof groundtraffic conflictsallows to decrease
delayandthenleadsbettersituationswith lessmoving
aircraft.
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Figure9: Numberof generationsasa functionof time

5.3 Geneticalgorithm efficiency

In orderto observetheGA efficiency, figure9 givesthe
numberof generationsrequiredby theGA asafunction
of time for thetwo GA strategies.

For theglobalmethod,thedifferentpeakswhich ap-
pearsat 7, 10am,1 and7 pmarethetraffic peaks.

For themixedmethod,theglobaloptimumis always
found with a few numberof generations: sortingair-
craft by evolutive priority levelsseamsto be very effi-
cientasfarasgroundconflictsresolutionis concerned.

6 Conclusionand further work

A preliminarywork hasshown that it waspossibleto
build a taxiway adviserin orderto optimizetheground
traffic onbusyairportssuchasRoissyCharlesdeGaulle
andOrly. It canbenoticedthat themodelingwaseas-
ily improvedwith new runwayson RoissyCharlesDe
Gaulle,differentspeeds,uncertaintieson speedsetc...
without changingthe algorithm itself. GeneticAlgo-
rithmsarevery efficient on theproblemasthey search
theglobaloptimumof theproblemwhereasadetermin-
istic algorithm suchas a 1-to-n strategy causesmore
delay.

Further work will concentratein improving the
global criteria for GeneticAlgorithms, taking into ac-
count for example take off sequencingneedsof ap-
proachsectorsor priority levelsfor slotteddepartures.
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